Master of Science in Electrical Engineering (MSEE)

Notice to Prospective Degree Program Students

This institution is provisionally approved by the Bureau for Private Postsecondary Education to offer degree programs. To continue to offer this degree program, this institution must meet the following requirements:

  • Become institutionally accredited by an accrediting agency recognized by the United States Department of Education, with the scope of the accreditation covering at least one degree program.
  • Achieve accreditation candidacy or pre-accreditation, as defined in regulations, by (xx/xx/xxxx), and full accreditation by (xx/xx/xxxx).

If this institution stops pursuing accreditation, it must:

  • Stop all enrollment in its degree programs, and
  • Provide a teach-out to finish the educational program or provide a refund.

An institution that fails to comply with accreditation requirements by the required dates shall have its approval to offer degree programs automatically suspended.

 

Program Objectives:

The MSEE degree program is designed to provide students with advanced knowledge and hands-on experience in electronics engineering. Through the learning process, the students not only acquire knowledge in modern electronics technologies but also cultivate abilities in designing, simulating, and integrating the engineering subjects learned. They are encouraged to apply their knowledge and skills to course projects that match industry trends.

Program Learning Outcomes:

Students graduating with an MSEE degree will be able to-

  • Create reports for engineering projects that demonstrate an advanced level of proficiency and evidence-based decision making ability.
  • Apply the specialized skills relevant to graduate level work to examine problems, synthesize the data/information, and communicate the requirements and the solutions effectively.
  • Prepare engineering prototype models, conduct experiments, collect measurements, analyze the data, and effectively interpret the results.
  • Demonstrate the expertise and resourcefulness in utilizing multiple sources of information to research and strategize solutions necessary to complete engineering projects.
  • Produce robust hardware/software solutions to meet industry needs in the modern technology areas by utilizing existing technology in a novel manner.

Background Preparation:

Students admitted into the MSEE degree program are required to have the following background preparation. A student with any deficiency is required to clear it by either (1) taking the course at NPU and earning a grade of at least C- or higher, or (2) taking and passing a proficiency exam on the subject. The student must clear prerequisites before attempting to enroll in graduate level courses.

  • Engineering Mathematics: MATH201, MATH202, MATH203, MATH205, and MATH208;
  • Engineering Sciences: PHYS201 & Lab, PHYS202 & Lab, PHYS301;
  • Electrical and Computer Engineering Subjects: CS204 & Lab, EE205 & Lab, EE300, EE301, EE323 & Lab;
  • The following mezzanine courses are also required for background preparation. Credit earned at NPU can meet the Electives requirement for the program: CE450L/G, EE461L/G, and P450G.

The above background preparation subjects will satisfy the prerequisites for the courses listed in the following Foundation Requirements as well as graduate courses in the study areas of Internet of Things (IoT), embedded systems, multi-core computing, and modern IC technologies. Instructors may update the prerequisite requirements for a concentration area based on changing technologies.

MSEE Curriculum

A minimum of 36 trimester units of graduate study are required for the MSEE program. They include a few required foundation courses, a number of engineering courses based on the student’s selection of technical pursuit, a required capstone course, and electives. The engineering coursework in the ranges of electronics and computer engineering will develop technical skills beneficial to the student for career planning. The student also has the opportunity to take elective courses outside of the electronics or computer engineering areas to broaden the student’s skillset.

The student must meet prerequisite requirements when taking any course. Upon clearing background preparation work, the student starts to take courses to meet the degree requirements. The student must begin his/her graduate study with the subjects listed in the Foundation Requirements section.

Foundation Requirements (9 units)

(Required subjects)

CE450G Fundamentals of Embedded Engineering
EE461G Digital Design and HDL
EE468G Microelectronics Circuit Design and Analysis

Engineering Course Requirements (12 units)

The student is advised to consider industry trends when selecting electronics and computer engineering courses. Before taking the Capstone Course near the end of the program, the student will take a minimum of 12 units of graduate level engineering courses and 12 units of electives. Choices of field of study include the following: Internet of Things (IoT), embedded systems, multi-core computing, and modern IC technologies.

The following are examples of cluster courses for each concentration area:

Internet of Things (IoT) and Embedded Systems: EE517, CE512, CE522, CE523, CE530
Multi-core Computing: EE504, EE553
Modern IC Technologies: EE505, EE511, EE520, EE616

Each trimester when the course offering list is published, instructions on graduate level courses belonging to various concentration areas are also published along with the course offering list. Every graduate student is advised to refer to these instructions to select courses and build his/her expertise area. In addition, a cross disciplinary study of engineering concentration areas can be desirable as the fast changing electronics and computer industries have become more demanding on engineers to have multidisciplinary skillsets.

Electives (12 units)

The student may take any graduate-level courses, even outside of engineering, to meet the electives requirement of 12 units. When applicable, the student may take Curricular Practicum courses and engage in practical training to work on company projects that are directly related to the student’s field of study. No more than 6 units of practicum coursework may be counted towards degree requirements.

Capstone Course (3 units)

(A required subject)

Upon completing all or most of the coursework for this program, the student is required to take the capstone course and, under the guidance of the course instructor, integrate the knowledge and skills learned from all of the courses taken during the program.

EE595 Electrical Engineering Capstone Course